Extensions 1→N→G→Q→1 with N=C22xQ8 and Q=C4

Direct product G=NxQ with N=C22xQ8 and Q=C4
dρLabelID
Q8xC22xC4128Q8xC2^2xC4128,2155

Semidirect products G=N:Q with N=C22xQ8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22xQ8):1C4 = C23.Q16φ: C4/C1C4 ⊆ Out C22xQ832(C2^2xQ8):1C4128,83
(C22xQ8):2C4 = C2xC23.31D4φ: C4/C1C4 ⊆ Out C22xQ832(C2^2xQ8):2C4128,231
(C22xQ8):3C4 = C24.55D4φ: C4/C1C4 ⊆ Out C22xQ832(C2^2xQ8):3C4128,240
(C22xQ8):4C4 = C24.57D4φ: C4/C1C4 ⊆ Out C22xQ832(C2^2xQ8):4C4128,243
(C22xQ8):5C4 = C24.61D4φ: C4/C1C4 ⊆ Out C22xQ832(C2^2xQ8):5C4128,252
(C22xQ8):6C4 = (C22xQ8):C4φ: C4/C1C4 ⊆ Out C22xQ8328-(C2^2xQ8):6C4128,528
(C22xQ8):7C4 = C24.176C23φ: C4/C1C4 ⊆ Out C22xQ832(C2^2xQ8):7C4128,728
(C22xQ8):8C4 = C23.(C2xD4)φ: C4/C1C4 ⊆ Out C22xQ8328-(C2^2xQ8):8C4128,855
(C22xQ8):9C4 = C2xC42:3C4φ: C4/C1C4 ⊆ Out C22xQ832(C2^2xQ8):9C4128,857
(C22xQ8):10C4 = C4:Q8:C4φ: C4/C1C4 ⊆ Out C22xQ8328-(C2^2xQ8):10C4128,861
(C22xQ8):11C4 = C23.4C24φ: C4/C1C4 ⊆ Out C22xQ8328-(C2^2xQ8):11C4128,1616
(C22xQ8):12C4 = C24.636C23φ: C4/C2C2 ⊆ Out C22xQ8128(C2^2xQ8):12C4128,178
(C22xQ8):13C4 = C24.165C23φ: C4/C2C2 ⊆ Out C22xQ832(C2^2xQ8):13C4128,514
(C22xQ8):14C4 = C24.155D4φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8):14C4128,519
(C22xQ8):15C4 = C24.66D4φ: C4/C2C2 ⊆ Out C22xQ832(C2^2xQ8):15C4128,521
(C22xQ8):16C4 = C2xC23.67C23φ: C4/C2C2 ⊆ Out C22xQ8128(C2^2xQ8):16C4128,1026
(C22xQ8):17C4 = C23.192C24φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8):17C4128,1042
(C22xQ8):18C4 = Q8xC22:C4φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8):18C4128,1072
(C22xQ8):19C4 = C2xC23.C23φ: C4/C2C2 ⊆ Out C22xQ832(C2^2xQ8):19C4128,1614
(C22xQ8):20C4 = C22xQ8:C4φ: C4/C2C2 ⊆ Out C22xQ8128(C2^2xQ8):20C4128,1623
(C22xQ8):21C4 = C2xC23.38D4φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8):21C4128,1626
(C22xQ8):22C4 = C22xC4wrC2φ: C4/C2C2 ⊆ Out C22xQ832(C2^2xQ8):22C4128,1631
(C22xQ8):23C4 = C2xC42:C22φ: C4/C2C2 ⊆ Out C22xQ832(C2^2xQ8):23C4128,1632
(C22xQ8):24C4 = C2xC23.32C23φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8):24C4128,2158

Non-split extensions G=N.Q with N=C22xQ8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22xQ8).1C4 = (C2xQ8):C8φ: C4/C1C4 ⊆ Out C22xQ8128(C2^2xQ8).1C4128,4
(C22xQ8).2C4 = (C2xC42).C4φ: C4/C1C4 ⊆ Out C22xQ832(C2^2xQ8).2C4128,51
(C22xQ8).3C4 = C2.7C2wrC4φ: C4/C1C4 ⊆ Out C22xQ832(C2^2xQ8).3C4128,86
(C22xQ8).4C4 = C42.395D4φ: C4/C1C4 ⊆ Out C22xQ832(C2^2xQ8).4C4128,201
(C22xQ8).5C4 = C24.45(C2xC4)φ: C4/C1C4 ⊆ Out C22xQ832(C2^2xQ8).5C4128,204
(C22xQ8).6C4 = C2xC42.C22φ: C4/C1C4 ⊆ Out C22xQ864(C2^2xQ8).6C4128,254
(C22xQ8).7C4 = C42.407D4φ: C4/C1C4 ⊆ Out C22xQ832(C2^2xQ8).7C4128,259
(C22xQ8).8C4 = C42.70D4φ: C4/C1C4 ⊆ Out C22xQ832(C2^2xQ8).8C4128,265
(C22xQ8).9C4 = C2xC4.6Q16φ: C4/C1C4 ⊆ Out C22xQ8128(C2^2xQ8).9C4128,273
(C22xQ8).10C4 = C42.415D4φ: C4/C1C4 ⊆ Out C22xQ864(C2^2xQ8).10C4128,280
(C22xQ8).11C4 = C42.85D4φ: C4/C1C4 ⊆ Out C22xQ864(C2^2xQ8).11C4128,290
(C22xQ8).12C4 = M4(2):8Q8φ: C4/C1C4 ⊆ Out C22xQ864(C2^2xQ8).12C4128,729
(C22xQ8).13C4 = C2xC42.3C4φ: C4/C1C4 ⊆ Out C22xQ832(C2^2xQ8).13C4128,863
(C22xQ8).14C4 = (C2xD4).137D4φ: C4/C1C4 ⊆ Out C22xQ8328-(C2^2xQ8).14C4128,867
(C22xQ8).15C4 = M4(2).25C23φ: C4/C1C4 ⊆ Out C22xQ8328-(C2^2xQ8).15C4128,1621
(C22xQ8).16C4 = C42.394D4φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8).16C4128,193
(C22xQ8).17C4 = C42.44D4φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8).17C4128,199
(C22xQ8).18C4 = C2xQ8:C8φ: C4/C2C2 ⊆ Out C22xQ8128(C2^2xQ8).18C4128,207
(C22xQ8).19C4 = C42.399D4φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8).19C4128,211
(C22xQ8).20C4 = Q8:M4(2)φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8).20C4128,219
(C22xQ8).21C4 = Q8:5M4(2)φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8).21C4128,223
(C22xQ8).22C4 = C24.51(C2xC4)φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8).22C4128,512
(C22xQ8).23C4 = C4.C22wrC2φ: C4/C2C2 ⊆ Out C22xQ832(C2^2xQ8).23C4128,516
(C22xQ8).24C4 = C42.327D4φ: C4/C2C2 ⊆ Out C22xQ8128(C2^2xQ8).24C4128,716
(C22xQ8).25C4 = C42.120D4φ: C4/C2C2 ⊆ Out C22xQ8128(C2^2xQ8).25C4128,717
(C22xQ8).26C4 = C2x(C22xC8):C2φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8).26C4128,1610
(C22xQ8).27C4 = C24.73(C2xC4)φ: C4/C2C2 ⊆ Out C22xQ832(C2^2xQ8).27C4128,1611
(C22xQ8).28C4 = D4o(C22:C8)φ: C4/C2C2 ⊆ Out C22xQ832(C2^2xQ8).28C4128,1612
(C22xQ8).29C4 = C22xC4.10D4φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8).29C4128,1618
(C22xQ8).30C4 = C2xC8:4Q8φ: C4/C2C2 ⊆ Out C22xQ8128(C2^2xQ8).30C4128,1691
(C22xQ8).31C4 = Q8xM4(2)φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8).31C4128,1695
(C22xQ8).32C4 = C42.695C23φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8).32C4128,1714
(C22xQ8).33C4 = C42.302C23φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8).33C4128,1715
(C22xQ8).34C4 = Q8.4M4(2)φ: C4/C2C2 ⊆ Out C22xQ864(C2^2xQ8).34C4128,1716
(C22xQ8).35C4 = C2xQ8oM4(2)φ: C4/C2C2 ⊆ Out C22xQ832(C2^2xQ8).35C4128,2304
(C22xQ8).36C4 = Q8xC2xC8φ: trivial image128(C2^2xQ8).36C4128,1690
(C22xQ8).37C4 = C22xC8oD4φ: trivial image64(C2^2xQ8).37C4128,2303

׿
x
:
Z
F
o
wr
Q
<