extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×Q8)⋊1C4 = C23.Q16 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8):1C4 | 128,83 |
(C22×Q8)⋊2C4 = C2×C23.31D4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8):2C4 | 128,231 |
(C22×Q8)⋊3C4 = C24.55D4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8):3C4 | 128,240 |
(C22×Q8)⋊4C4 = C24.57D4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8):4C4 | 128,243 |
(C22×Q8)⋊5C4 = C24.61D4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8):5C4 | 128,252 |
(C22×Q8)⋊6C4 = (C22×Q8)⋊C4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8):6C4 | 128,528 |
(C22×Q8)⋊7C4 = C24.176C23 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8):7C4 | 128,728 |
(C22×Q8)⋊8C4 = C23.(C2×D4) | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8):8C4 | 128,855 |
(C22×Q8)⋊9C4 = C2×C42⋊3C4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8):9C4 | 128,857 |
(C22×Q8)⋊10C4 = C4⋊Q8⋊C4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8):10C4 | 128,861 |
(C22×Q8)⋊11C4 = C23.4C24 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8):11C4 | 128,1616 |
(C22×Q8)⋊12C4 = C24.636C23 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8):12C4 | 128,178 |
(C22×Q8)⋊13C4 = C24.165C23 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8):13C4 | 128,514 |
(C22×Q8)⋊14C4 = C24.155D4 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8):14C4 | 128,519 |
(C22×Q8)⋊15C4 = C24.66D4 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8):15C4 | 128,521 |
(C22×Q8)⋊16C4 = C2×C23.67C23 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8):16C4 | 128,1026 |
(C22×Q8)⋊17C4 = C23.192C24 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8):17C4 | 128,1042 |
(C22×Q8)⋊18C4 = Q8×C22⋊C4 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8):18C4 | 128,1072 |
(C22×Q8)⋊19C4 = C2×C23.C23 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8):19C4 | 128,1614 |
(C22×Q8)⋊20C4 = C22×Q8⋊C4 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8):20C4 | 128,1623 |
(C22×Q8)⋊21C4 = C2×C23.38D4 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8):21C4 | 128,1626 |
(C22×Q8)⋊22C4 = C22×C4≀C2 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8):22C4 | 128,1631 |
(C22×Q8)⋊23C4 = C2×C42⋊C22 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8):23C4 | 128,1632 |
(C22×Q8)⋊24C4 = C2×C23.32C23 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8):24C4 | 128,2158 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×Q8).1C4 = (C2×Q8)⋊C8 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).1C4 | 128,4 |
(C22×Q8).2C4 = (C2×C42).C4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).2C4 | 128,51 |
(C22×Q8).3C4 = C2.7C2≀C4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).3C4 | 128,86 |
(C22×Q8).4C4 = C42.395D4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).4C4 | 128,201 |
(C22×Q8).5C4 = C24.45(C2×C4) | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).5C4 | 128,204 |
(C22×Q8).6C4 = C2×C42.C22 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).6C4 | 128,254 |
(C22×Q8).7C4 = C42.407D4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).7C4 | 128,259 |
(C22×Q8).8C4 = C42.70D4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).8C4 | 128,265 |
(C22×Q8).9C4 = C2×C4.6Q16 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).9C4 | 128,273 |
(C22×Q8).10C4 = C42.415D4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).10C4 | 128,280 |
(C22×Q8).11C4 = C42.85D4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).11C4 | 128,290 |
(C22×Q8).12C4 = M4(2)⋊8Q8 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).12C4 | 128,729 |
(C22×Q8).13C4 = C2×C42.3C4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).13C4 | 128,863 |
(C22×Q8).14C4 = (C2×D4).137D4 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).14C4 | 128,867 |
(C22×Q8).15C4 = M4(2).25C23 | φ: C4/C1 → C4 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).15C4 | 128,1621 |
(C22×Q8).16C4 = C42.394D4 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).16C4 | 128,193 |
(C22×Q8).17C4 = C42.44D4 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).17C4 | 128,199 |
(C22×Q8).18C4 = C2×Q8⋊C8 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).18C4 | 128,207 |
(C22×Q8).19C4 = C42.399D4 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).19C4 | 128,211 |
(C22×Q8).20C4 = Q8⋊M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).20C4 | 128,219 |
(C22×Q8).21C4 = Q8⋊5M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).21C4 | 128,223 |
(C22×Q8).22C4 = C24.51(C2×C4) | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).22C4 | 128,512 |
(C22×Q8).23C4 = C4.C22≀C2 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).23C4 | 128,516 |
(C22×Q8).24C4 = C42.327D4 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).24C4 | 128,716 |
(C22×Q8).25C4 = C42.120D4 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).25C4 | 128,717 |
(C22×Q8).26C4 = C2×(C22×C8)⋊C2 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).26C4 | 128,1610 |
(C22×Q8).27C4 = C24.73(C2×C4) | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).27C4 | 128,1611 |
(C22×Q8).28C4 = D4○(C22⋊C8) | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).28C4 | 128,1612 |
(C22×Q8).29C4 = C22×C4.10D4 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).29C4 | 128,1618 |
(C22×Q8).30C4 = C2×C8⋊4Q8 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).30C4 | 128,1691 |
(C22×Q8).31C4 = Q8×M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).31C4 | 128,1695 |
(C22×Q8).32C4 = C42.695C23 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).32C4 | 128,1714 |
(C22×Q8).33C4 = C42.302C23 | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).33C4 | 128,1715 |
(C22×Q8).34C4 = Q8.4M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).34C4 | 128,1716 |
(C22×Q8).35C4 = C2×Q8○M4(2) | φ: C4/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).35C4 | 128,2304 |
(C22×Q8).36C4 = Q8×C2×C8 | φ: trivial image | 128 | | (C2^2xQ8).36C4 | 128,1690 |
(C22×Q8).37C4 = C22×C8○D4 | φ: trivial image | 64 | | (C2^2xQ8).37C4 | 128,2303 |